Mathematical Properties of Variable Topological Indices
نویسندگان
چکیده
منابع مشابه
Edge-decomposition of topological indices
The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.
متن کاملThe Structural Relationship Between Topological Indices and Some Thermodynamic Properties
The fact that the properties of a molecule are tightly connected to its structural characteristics is one of the fundamental concepts in chemistry. In this connection, graph theory has been successfully applied in developing some relationships between topological indices and some thermodynamic properties. So , a novel method for computing the new descriptors to construct a quantitative rela...
متن کاملThe use of topological indices to predict thermodynamic properties of amino acids derivatives
In the present investigation the applicability of various topological indices are tested for the QSPR study on 80 amino acids derivatives. Relationship between the Randic' (1X), Balaban (J), Szeged (Sz), Harary (H), Wiener (W), Hyper-Wiener (WW) and Wiener Polarity (WP) indices to the thermodynamic Properties such as thermal energy Eth (J/mol) and heat capacity (CV J/mol. K) of amino acids is r...
متن کاملQuantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices
Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...
متن کاملSome Topological Indices of Nanostar Dendrimers
Wiener index is a topological index based on distance between every pair of vertices in a graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In the present paper, by using a new method introduced by klavžar we compute the Wiener and Szeged indices of some nanostar dendrimers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym13010043